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1970 Spring Joint  Compufer Conference 

inverse algorithm 
its applications 

by L. C. GEARY* and C. C. LI 
(iniumsily o j  Pilh-burgh 
Pittsburgh, Penrisylvnnin 

INTltOnUCTTOS 

A great nmount of rcsenrcli for the solution of liriear 
inequalities has been uiidcrtnkcil i n  the prist ten years. 
One: of the rcasoiis for this rcsexcli is the dcvelopnicnt, 
of linear sepnr:xt,ioti nppronchcs to pattern rccogni- 
tioii1-5.s-16 and thrcshold logic p r o b l c n ~ ~ . ~ J ~ ~  Both of 
these problems require thc dctcniiinntion of n decision 
function or decision functions which, in the c : ~  of 
linear scpnrat,iori, involve n systcrn of 1itw:xr inequnlit.irs. 

*Prescritly with C:i i l I  R ~ ; ~ n r r h  & Ikvdopmrrit, Compnriy, Pit ts- 
burgh, PR. 
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to be minimized \diere y i  is tlir itli component of thr -Y 
by 1 vcctor y dcfiiied below 

y = .ZW -- b, b > 0. (3) 

The improvement lics in an acceleratioii of tlie Iio- 
ICashynp algorithm caused by n steeper gradient of 
J ( y )  as can be seen when n comparison is made bc- 
tween the two criterion functions. 1,ct J j , k  (y) designate 
the criterion funct>ion used in the IIo-T<nshyap 
algorithm, 

N 

J s l ; ( y )  = I I  y 112 = yi2. (4) 
i= 1 

hr rrprcscnted as 

whcrr is nn by 1 :\up,inrnlrtl pnttrrn vector, + v2,  thrn tlie grxlieiit of 

J ( y )  with respcct to I(' is given by 

= T -t 1, and .Y = 

where Since J ( y) and J / , k  ( y) reach their respective minimum 
when each (cosh $yi)* and each y12 are respectively 
minimized, one can simply compare J (y,) and J h k  (pi), 
the convex functions of one variable only. Taking the 
gradients of J ( y ? )  and J , , k ( y l )  with respect to yil one 
obtains 

d ( y )  = [sinli ylJ - - -, siiill yN], 

and the gradient of J ( y )  n-it11 respect to b is given by 

(9) 

where the derivative of n scalar with respect to n 
column vector is a columii vector. Since w is not con- 
strained in any way d J ( y ) / a r r .  = 0 implies s(y) = 0 
which, in turn, implies y t  = 0 for all i = 1, 2, - -, S. 
Therefore, for a fixed b > 0, minimizing J ( y )  Jvitli 

-. - - -2s(y), a J ( Y )  
ab 

2 2 
2lJ, + - yi3 -{- - yi5 + - 

3! ti! ( 5 )  
a J ( y i )  -- == 

ay, 

and 

a J h k ( Y i )  = 2yi. 
(6) 

ayi respect to t o  gives 

It is clear that the absolute value of J J ( y i ) / ~ y j  is 
greater than thc absolute value of a.J) ,k  (yi)/ayi evcry- 
where except a t  y i  = 0 where they are equal. In  gcn- 
eral, the gradient a.J(y)/dy is greater than the gradient 
aJnk(y)/dy everyivhcre cscrpt a t  the origin y = 0. 
Since the gr:idicnt descent procedure is used in both 
algorithms, and since y 2nd b, or y and w, nre linearly 
related, it is conceivable that the proposed algorithm 
may have n higher convergence rate for n solution zv. 

As mentioned previously, J (y) reaches n minimum 
when ench term (cosh tyi)', (i = 1, . . . , N), is mini- 
rnizcd. For each (cos11 i y i ) ?  to be a minimum, each 
yi, (i = 1, . . . , S) ,  must equal zero and y = 0 gives n 
desired solution. Since the bS1s arc only constrained to 
be positive, J ( y )  can be minimized with respect to both 
t u  and 2, subject to the condition tlint b > 0. Note tlmt 
i t  is not necessary to attain the minimum value of 
J ( y ) ;  in fact, a solution io* is obtainrd whenever 
1~ 2 0 with b > 0 from which follow Aw* 2 b > 0. 

DEVELOPMEST OF THE T\170-CT,ASS 
AT,GORITIIlf 

y = A1r - b = 0. 

Solving the above rquation for w, one obtains 

20 = A %  (10) 

where A# is tlie gencralizcd inverse of -4.  
On tlie other hand, for n fixcd w, dJ(y) , Jdh  = 0 I\ itli 

b > 0 dictates n descent procetliuc of tlic follouing 
form, n-it11 k denoting the itcmtion numbcr: 

b ( k  + 1) = b ( k )  + A b ( k )  (11) 

where the components of Ahi (k) ,  i = 1, 2 ,  . - -, 
Ab(l i )  are govcnicd by 

of 

0 if y i  5 0. 

Introduce n positive scalar p ( k )  as the proportionality 
constant and ren-rite equation (12) in  the vector forni, 

A b ( k )  = p ( k ) h ( k ) ,  (13) 
where 

Let the mnt>ris A whose t,rnnspose is h ( k )  = [ h i ( X . ) ]  = [sin11 vi(]:) + I sinli g , ( k )  I ] .  (1-1) 

A f  = c12.1, * . n12.11 12.2, * n & 1 *  (i = 1, 2, * 0 ., X) 
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As cnii be sho\vii l:itcr, ~ ( 1 ; )  mny be chosen ns cqual to 

(15) 1 ,'( k) = -- - 
co.4 ymnx ( I ; )  

where 
y l l l n m  = l r a s  I y t ( w  I . (16) 

i 

Sub\tituting ( I S )  into (11) and, from (lo), writing 

W(k + 1) = w ( k )  + p ( k ) f l # h ( k ) ,  (17) 
one obtains t,lic following algorithm: 

w(0) = A ' b ( O ) ,  b ( 0 )  > 0 but otherwise arbitrary 
g(k) = A1c(k) - b ( k )  

b ( k  + 1) = b ( k )  + p ( k ) h ( k )  (18) 1 zu(k + 1)  = w ( k )  + p ( k ) A # h ( k )  

where h ( k )  and p ( k )  are given by equations (14) and 
(15) respectively. Note that in this algorithm p ( k )  
varies a t  each step and is a nonlinear function of y(k).  
A rccursive relation in y(k) can also be obtained from 
(18) 7 

y(k + 1) = y(k) + p ( k )  (AA# - I ) h ( k ) .  (19) 
Just like the Ho-Iiashyap algorithm, it can be shown 

that the nbove algorithm (18) converges to a solution 
w* of the system of linear inequalities in a finite number 
of steps provided that a solution exists, and simultane- 
ously acts as a test for the inconsistency of the linear 
inequalities. These properties are formally stated in 
Theorem I givcn in the nest section. 

THEOREM I 

Before discussing the main theorem, a lemma to be 
nsed in the proof of the theorem will be given first. 

Lenma 1: Let one consider the set of linear inequalities 
(1) and the algorithm (18) to solve this set. Then 

1) y(k) + o for any k; 
and 

2) if the set of linenr inequalities is consistent, 

then 
g(k) $ 0 for any k. 

This lemma is the same as the one given by Ho and 
Iiashyap8 except that the iterative algorithm is differ- 
ent. The proof of the lemma is not given here since it is 
similar to the proof of Ho-Kashyap lemma. Recall 
again the notation used in the lemma: y(k) 5 0 means 
that yi(k) 5 0 for all i but y possesses at lenst one 
negative component. This lemma is a rigorous state- 
ment that with a consistent set of linear inequalities 
Aw > 0, the elemcnts of the vector y(k) cannot be all 
non-iiositive. 

T l ~ e o ~ e n ~  I: Considcr the set of lincnr inequalities (1) 
and thr algorithm (18) to solve tlicsc incqualities, 

1 )  If the sct of lincnr incqualities is consistent then 

a) A V [ ? j ( k ) ]  4 I.'[y(k -t I ) ]  - V [ v ( k ) ]  < 0 
 an(^ lim V C ~ ( ~ ) I  = o implying convergcnce 

to n solution in an infinite riumbrr of steps; 
and 

b) actually, a solution is obtained in n finite 

and let V [ y ( k ) ]  = 1 1  y(k) 112. 

k-Lv 

2) 

Proof: 

number of steps. 

If the set of linear inequalities is inconsistent, 
then there existsa positive integer k* such that 

AV[y(k)] < 0 for E < E* 
AV[y(k)] = 0 for k 2 k*, 

and 

Y (k) $0 for k < k* 
y(k) = y(k*) 2 0 for k 2 k* 

and 

~ ( k )  = w ( k * )  for k 2 k* 
b ( k )  = b(k*)  for k 2 k*. 

I n  other words, the occurrence of a nonpositive 
vector y(k) at any step terminates the algo- 
rithm and indicates the inconsisterlcy of the 
given set of linear inequalities. 

Part 1: Since the algorithm (18) can be rewritten as a 
recursive relation in y(k) given by (19), and 8 

V[y(k)] = 11 y(k) 1 1 2  > 0 for all y(k) z 0 (20) 

V[y(k)] can be considered as a Liapunov function 
for the nonlinear difference equation (1 9). Thus 

AV[?/(k)] P V b ( k  + I>]  - VC!/(k)l 

= I I  Y(k + 1)  IP - I 1  Y(k) II '  
= !/(k + l ) y @  + 1) - y'(k)y(k) 

= p ( k ) h ' ( k )  (AAf  - I) 'g(k) 
+ p ( k ) y ' ( k )  (AA+ - I ) h ( k )  

+ p?(k)h"k) (AB# - I ) t ( A A f  - I ) h ( k ) .  
Since (AAg - I) is hermitian idempotent, and 
.AA#y(k) = 0, AV[y(k)] reduces to 

AV[g (k) ] = - 2 p  (k) IL' ( k )  y ( k )  

+ p2(k)h'(k) (I - A A # ) h ( k ) .  (21) 

Further simplification leads to 
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For A V [ y ( k ) ]  to be negative semidefinite, AV[y(k)] = 
0 only if y(k) = 0 or y(k) 5 0, the matrix 

[ ~ ' ( k ) < R ( k )  ii ilFR (IC) + p (k) .R (X.) - j+(k) R'(k) ] 
must be positive definite. -4Af is positive semidefinite 
because AA' is hcrmitian idempotent, ztAAfx 2 0 for 
any x ;  it follows that xtRAA'Rz 2 0 for any z ;  hence 
RAAjR is also positive semidefinite. Nom one can 
choose a p ( k )  such that [ p ( k ) R ( k )  - p2(k)RZ(k)] 
is positive definite. [ p ( k ) R ( k )  - p2(k)R2(k)] is 
positive definite if 

[ p ( k ) r i i ( k )  - pz(k)~iiZ(k)] > O 

for all i = 1, 2, . * * ,  N .  (23) 

Since ri@) = sinh y~ /y i  > 0 for all i ar,d p ( k )  is re- 
stricted to be positive, the above condition reduces to  
the condition, 

1 - p ( k ) r i i ( k )  > 0 for all i = 1, 2, * 0 ,  N .  (24) 

For p (k) chosen in equation (15) , 
1 

cash y m a x ( k )  
P ( k )  = 

yiZn(k) 
n=O (218 + l)! 

Thus the condition (24) is satisfied and b ( k ) R ( k )  - 
p ? ( k ) R 2 ( k ) ]  is positive definite for 

1 
cash Ymax (k) ' P@) = 

Then AV[y(k)] has the desired property of negative 
semidefinite for p ( k )  = l/coshg,,,(k) and for any 
finite y(k). 

From equation (22) one notes that AV[y(k)] equals 
zero if and only if y(k) = 0 or y(k) 5 0. Sincc it is 
assumed that the set of linear inequalities (1) is con- 
sistent, and from the lemma y(k) $ 0, therefore 

A V [ y ( k ) ]  < 0 fora11 y(k) Z 0 (25) 

= 0 if y(k) = 0. 

By Liapunov's stability criterion, the equilibrium 
state y = 0 of the discrete system (19) cnii be reached 
asymptotically, i.e., lini 1 1  y(k) [ I 2  = 0, which corre- 

sponds to a solution tu** with Aw** = b > 0. This 
completes the proof of Part 1 (a). 

To prove the convergence of the algorithm (18) in a 
finite number of steps, one notes that b ( k )  is a non- 
decreasing vector. Ilrt b t ( 0 )  = [l, 1, - - I ] ,  t>hen 

h a  

b t ( k )  2 b'(0) 2 [l, 1, e . . ,  11 for any k > 0. 

Since A w ( k )  = b ( k )  + ~ ( k ) ,  I y'(k) I < [I, 1, ..., 11 
implies Aza*(k) > 0 wlicn a solution tu* is reached. 

But Y[y(k)] 5 1 implies I yf(k) I < [l, 1, - . * ,  13. 
Since V[y(k)] converges to zero in infinite time, it 
must converge to the region T'[y(k)] = 1 in finite 
time, hence I y'(k) I < [l, 1, --., 13, Azo(k) > 0, and 
a solution tu* = w ( k )  is obtained in a finite number of 
steps. This conipletes the proof of Part l (b) .  

Part 2: It has been proved in Part 1 that V[y(k)] is 
negative semidefinite independent of the consistency 
of the linear inequalities. Now, if the set of linear in- 
equalities (1) is inconsistent, one notes that y(k) 
cannot be 0 and hence V[y(k)] cannot become zero 
for any k > 0. There must exist a value of k, called 
k*, such that 

AV[y(k)] < 0 for 0 5 k < k* 
= 0 for k = k*, 

y(k) 4 0 for 0 5 E < k*. 
But V[y(k*)] = 0 if either y(k*) = 0 or y(k*) 5 0. 
Since y(k*) # 0, this implies y(k*) 5 0 and hence, 
from (14)) h ( k * )  = 0. Equation (19) indicates that  

?/@I = Y@*) 5 0 for all k 2 IC* 
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As a consequence, one obtains 

AV[y(k)] = 0 for all k 1. k* 
h ( k )  = 0 for all k 2 k* 

w(k )  = zu(k*) for all k 2 k* 

b ( k )  = b ( k * )  for all k 1. k* 

This completes the proof of the theorem. 

An Optiniuvi Choice ohp (k) 
The choice of p ( k )  = l/cosh yIIIIRX(k) in the previous 

section is only one of many possible choices of p ( k )  
for the convergence of the algorithm (1s). The con- 
vergence rate may be further improved by choosing a 
p ( k )  such that the decrease in the Lyapunov function 
V[y(k)] is maximized a t  every step, that is, 
- AV[y(k) J is maximized with respect to p ( k ) .  Taking 
the partial derivative of AV[y(k)] in equation (22) 
with respect to p ( k )  leads to 311 optimum value of 
p ( k )  given by 

7he Scalar 

tu1 = c0.3732, 0.2278, 0.2275, 0.1654, 0.0769, 0.0569, 

0.0247,0.0247,0.0247], 

The same example was solved using the IIo-ICashyap 
dgorithm.s It required 229 iterations with the same 
initial b ( 0 ) .  The solution weight vector tu for the Ho- 
Kasliyap algorithm is 

7uf = c0.5741, 0.3447, 0.3447, 0.2425, 0.1135, 0.1080, 

0.0436,0.0436, 0.04361. 

The computing time for the proposed algorithm was 
50 seconds on IBAI 7000 with a cost of $1.50, while 
the Ho-Rashyap algorithm required SO minutes with a 
cost of $23.50. Thus the proposed algorithm not only 
reduced the number of required iterations but also 
the computing time and cost to solve the problem. It 
was observed, that for 0.5 1 b i (0 )  1 0.001 and p(k) 
given by equation (26) , for all examples tried by the 
authors that the number of iterations was less than or 
equal to the number of iterations required by the Ho- 
Kashyap algorithm. I n  some cases the number of 
iterations was reduced by a factor of 25.17 

E'ranzple 2: The proposed algorithm was also applied 
to  a preliminary study of a biomedical pattern recog- 
nition problem. The problem is to investigate whether 
or not a change exists in the diurnal cycle of an in- 
dividual person upon a change in his environmental 
condition or physiological state and if such a change 
may be used to diagnose physical ailments under 
strictly controlled conditions by measuring the :%mounts 
of electrolytes present in urine samples every three 
hours.*s The data used in thisexample consisted of 
thirteen sample patterns under tn-o different conditions. 
Each pattern has eight components whicll represent 
the mean excretion rates of an electrolyte for each 
thrce-hour period of the twenty-four hour cycle. Thus 
h' = 13 and IZ = + 1 = S + 1 = 9; the size of the 
pattern matrix A is 13 by 9. The p:ittern matrix A is 
shown in Table 1. Let b'(0)  = [O. l ,  0.1, . .O.l] .  For 
this problem the Ho-Kashyap algorithm with p = 1 
required 7 iterations to determinc the scpnrability. 
However, the proposed algorithm wit11 p(Ii) given by 
equation (2G) required only two iterations, jvhcrc 
p(1) = 5.270GS4 and p ( 2 )  = 3.107152. Tlie problem 
is linearly separable and n solution weight vector tp 

obtained by the proposed algori tlirn is 

~ ' ( 2 )  C-13.GOS0, 2.5915, 1.GS47, 2.2314, 0.3314, 

3.0077, 1 .S42S, 1.6.5.i0, O.OOOG] 

(26) 
provided that I - AAR > 0. For this value of p ( k ) ,  
AV[y(k)] is negative definite in [ z / ( k )  + I y ( k )  I ] 
which is required in the convergence proof of the 
algorithm ( IS ) .  A flow chart summnrizing the above 
procedure is slio\vn in Figure 1. 

EXAMPLES 

The algorithm (1s) has been applied to  pattern 
recognition and switching theory problems. For slyitch- 
ing theory problems the generalized inverse of the N 
by 11 pattern matrix A is simplified to  

A# = 2-("-1)A'. 

Two example problems will be presented, one in switch- 
ing theory and the other in pattern recognition. 

Rxaniple i: Consider a Boolean function of eight binary 
variables which corresponds to the separation of the 
two classes: 

Class C1 = (127, 191, 215, 217 to  255) 

Class Cz = (0 to 126, 128 to  190, 192 to 214, 216). 

Here m = 2' = 256 and n = T + 1 = 9, where r is the 
number of binary variables. For 

d 

b'(0) = [o$l,o*l,o-ll ' * * , & l l  o.lJo.l] 
and p (k) given in equation (26), the algorithm termi- 
nates after the tenth iteration and gives a solution 
weight vector w for the switching function, 
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Figure 1-Flow chart of the proposed 3-clms algorithm 
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EXTENSTOW TO THE IlIJTiTTCI~ASS 
ALGOR I TI1 X I 

Thc problem of multiclnss patterns classificntion is 
that i t  must, bc detcrmincd to which of the R different 
clmscs, C1, CZ, -.., CR, a given pattern vector, r, bc- 
longs. If the R-class pattcrus are lincnrly sepnrrible, 
there exist R wigh t  vectors I P ,  to  construct R dis- 
criminant functions g, (s) ,  ( j  = 1, 2, . . a ,  R ) ,  such 
that 

g j ( ~ )  = ~ ' i o j  > .rtwi = gl(r) for all i # j ,  T E C,. (27) 

Chaplin and Levndi*fi hsvc formulnted another sct of 
inequalities which cnn bc considcrcd as n rcprcscntn- 
tion of linenr sepnrntion of R-class pnttcrns. This set 
of incqunlities is 

11 r'U - e,' ( 1  < I( 3"U - est ( 1  for rill i # j ,  T E Cj (-9s) 
fo ra l l j  = 1, 2...., R 

where U is an n X ( R  - 1) weight matrix nnd the 
vectors e,'s are the vertex vectors of a R - 1 dimen- 
sional cquilnternl simplex with its centroid at the 
origin. If each e, is associated with one clriss, s is clnssi- 
fled according to  the nearest neighborhood of the 
mapping T'U to  thc vertices. Inequalities (2s) are, 
in fact, equivnlcnt to inequnlitics (27) with 

to j  = Ue,, ( j = 1, 2, . . e ,  R )  (29) 

Let the N X 11 pattern mntris A bc defined in the 
following 111 ann e r , 

A =  

where Ai is an nj X n submntrix hnving as its rows n.j 
transposed pattern vectors of class Cj, 

i x j t ,  ( I  = 1, 2, *.., nj),  

where the right subscript denotes the pattern class and 
the left subscript denotes the Zth pattern in that clam, 
and N = nl + 112 + - 0 -  + 718. Designate the ?E X 
( R  - 1) weight matrix U ns composcd of ( R  - 1) 

(31) 

column vectors up, ( q  = 1, 2, . . e ,  R - I ) ,  
u = [ul* ' ' ? k q *  * 'UR-l]. 

Also define nn N X (R - 1) matrix B as 

B =  

whose row vectors ~bj' ,  ( j = 1, 2, 0 ,  R;  1 = 1, 2, . ., 
n j) , correspond to the class groupings in tha A matrix 
and satisfy tho following inequalities 

(33) 
fornll j = 1,2, - e - ,  €2. ' 

Bj is an nj X (R - 1)  submntrix of B, j = 1, 2, 1 ., R. 
Let an AT X ( R  - 1 )  mntris I'hc definrd as 

&,'(e$ - e;) > 0 for d l  i f j 

A 

(34) Y = AU - n. 
The rcprcsentntion of I' may be in tho  form of cither 
an array of (R -- 1)  colnmn vcct.ors, yq, ( q  .= 1, 2, - 0 ,  

R - 11, 
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or an array of N row vectors lYj, ( j = 1, 2, . , R ;  
1 = 1, 2, a ,  nj), corresponding to the class groupings 
in the A matrix, 

Y =  

where Y j  is an ? l j  X ( R  - 1) submntrix of Y ,  

Y j  = AjU - Rj 

or 

rYj i x j i U  - &jt j = 1, 2, * * . ,  R 

2 3 1,2, * * . , W j .  

The set of linear inequalities d l ich  nlll be discussed 
in this paper is 

A j T ; ( e j  - e;) > O forall i Zj (38) 
ford1 j =  l , C ) , - . . , R  

Associixttcd witAli it is another set of linear inequalities 

(39) Yj(ej - ei) = ( A  jU - Rj) ( e j  - ei) > O 
for all i $ j  

for all j = 1, 2, .... R 
or 

iYi(ej - e; )  = (Zrj'U - &if) (ej - ei) > 0 

for all i ts j 
for all j = 1,2, - .R 
for all I = 1, 2, - e n +  

Since, by (33), Bj(ej - e<) is constrained to have posi- 

tive components for all i + j ,  inequalities (39) implies 
the inequdities (35) and lienee (37) or (2s). When 
inequalities (3s )  nre sntisfied for all i f .j and for all 
j = 1, 2, - - e ,  R, R solubion weiglit matrix U is reached 
which will givr linear clnssification of R-class patterns; 
that  is, if 

xtU(ej - ei) > 0 for all i it j 

then 2 is classified as of class Cj. 

DEVELOPMENT OF THE XULTI-CLASS 
A L G 0R.I THM 

For the notational simplicity in  the derivation of 
the gradient function to be developed below, let the 
matrices A ,  U ,  B, and Y in equations (30), (31), (32), 

respectively as 

a11 a12 a1, . . . . . . . .  ] (40) 

. . . . . .  1 .  .] (43) 

&'I a N 2  a N B  

(J=[. . . . . . . . . ]  lhll qh? U1,R-1  (41) 

Unl Un? %,R-l  

bii biz ~ z , R - I ]  

bxi bwe b N . R - 1 1  

. . . . . . . .  B =  * I  (4% 

3/11 UlZ Y1 R-1 

and 

2/N1 UN? 3X.R-1 

Substituting these into equation (34), one obtains 
n 

gij = UikUkj - bij. (44) 
k-1 

Let C ( Y )  be an N X ( R  - 1) matrix defined by 

C ( Y )  = [ ~ i j ]  4 [cash t y i j ]  

(i 
Tlie criterion function J (  Y )  to be minimized is chosen 
as the trace of 4Cf(Y)C(Y), 

(45) 
1, ... , N ; j  = 1, . a * ,  R - 1). 

N R-1 

J ( Y )  4 Tr (4C'C) = C J j j (Y)  (46) 
i=l 2-1 

where 
Jij(Y) = 4 (cash iyij)'. 

Dctermine the gradients of J( Y) with respect to both 
U and R, 

(47) 
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(49) 

and tSj( 1’) is n row vector of the following form 

tSj(J’) = [tS,l(Y),  zS~~(J’ ) ,  . *  * ,  i S j ( ~ - ~ ) ( y ) ]  

= [sisinli y(v,J-,.i 0.1, a ,  sinli Y ( n j - l + t ) . ~ - l  J. (60) 
Since U is not constrained in any manner, &I( Y)/alT = 
0 implies that AS( Y )  = 0, which, in turn, implics that 

j = 1,2,  ... , R - 1, Therefore, for ~3J(1~)/8[J = 0 
and 3 fixed R, 

sirili y i j  = 0 and IPI~CC y l j  = 0 for all i = I, * - *, N sfid 

Y = A U -  B = 0 

which gives n Icnst square fit of 

U = AIR. (51 1 
On the other hand, for a fixcd lJ and the constraint 
Bj(e,  - e;) > 0 for all i 7t j as given in ( 3 3 ,  one 
niiglit attempt to increment R accordiiig to the follow- 
ing grndicnt dcsccnt procedure to rcducr J (  Y )  at cnch 
stcp, 

(52) 
whcrc the qtli clcmcnt, i j [ b j q ( k ) ] ,  of 6 [ l h j f ( k )  J in 
sZ?j(k) is given by 

R ( k  + 1) = B(k )  + 6B(h)  

= 2p(Ii) l , q j q (  Y(k)) ,  
i f  lI’j(1i) ( ~ j  -- e,)  > 0 

for :my q # j 
if rl*j(I;) (ej  - F,,) 5 0 

for :iiiy q Z j .  

However, lYj(li.) (ej - e,) > 0 dors iiot imply 
tSj(l’(k))(ej - e,) > 0. I I I  order to in:tkc &bj‘(k)] 
(ej - e,)  2 0 so thnt (3.7) C:LII be s:ttisliect at tach 
step, :L motlifird grntliriit (Irscriit proccdurr, sinil:\r to 
tlic o w  ndoptcd in Tcng :i,Ii(I Li’s gciiern1ie:itioll o f  the 
Ho-Kasliyap nlgoritlini 16,is to bc iisrd. Let n ( R  - 1) X 
( R  - 1) non-singular matrix Iij be dcfincd 

Bj = [ej - el, 

Also define 

6[J)jq(k)]  

a ,  ej - ej-1, cj - ~j,.’, - a ,  ej - e ~ ] .  

(53) 

Zj = YjZfj for all j = I, 2, - * a ,  R. (54) 

The increnicnt 6[tbj,(k)] is then given in terms of . 
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Z € ( Y ( k ) )  = 

= [ i l l  ( Y (  1;)) ' .hq( Y ( k ) ) .  ' 'hR-1 (]'(#+))I. 
(61) 

Tt follow from (.is) 2nd (56)  that  

S [ h j ( k > ] ( ~ j  - e ; )  2 O for RII i z j and for d l j .  
Thcn, from (59), 

s [ n ( k ) ]  = p ( k ) I l ( Y ( k ) ) .  

Substituting thc nbovc cquntion into (53), one hns 

B(k  + 1) = B ( k )  + p t k ) H ( I ' ( P ) )  (62) 

Using the above equation in (51), one has 

U ( k  + 1) = A"(k + 1) 

= AR(B(k) + p ( k ) H C Y ( k ) l j  
= U ( k )  + p ( k ) A f H [ Y ( k ) ]  (63) 

Therefore, an iterative algorithm to solve for U can be 
proposed in the following: 

U(O) = A#B(O) 
Y ( k )  = A U ( k )  - B ( k ) ,  Z j ( k )  = Y j ( k ) E j  

R(h: + 1) = B ( k )  + P ( ~ ) ~ [ Y ( X . ) l ,  

U ( k  + 1) = U ( k )  + p ( k ) A B H I Y ( k ) l  
k/'(YckJ) = [ S j ( k )  + Aj(k) ]Ej - '  

(64) 

where p ( k )  may be chosen as equal to 

(69) 

B f ( 0 )  = P [ e l , . . - c l i  . . - i e j , . . . , e j i  . . * j e R ,  ' ' *, C R I ,  

p > 0 (TO) 

The initial B mntris, B(O), may be chosen from 

A recursive rclat>iori in Y ( k )  is also obtnincd as folloxys: 

Y ( k  + 1) y ( k )  + p ( k )  (AAB - r ) H [ Y ( k ) ]  (71 )  
This algorithm is a convergent algorithm for the 

solution U of the set of linear inequalities (35). The 
nonlinear separability of the multiclass patterns can 
also be detected by observing a t  a certain step k* 

Yj(k*) ( e j  - e i )  2 0 for all i # j 

for all j = 1,2,  * * * ,  R. 

CONVERGENCE PROOF OF THE 
nSULTI-CLASS ALGORITI-IM 

The convergence of the proposed multi-class algo- 
rithm can be proved in the following steps. 

Le?nnza 2, Consider the set of inequalities (35) and the 
algorithm (64) to solve it. Then 

1) Y ~ ( / G )  (ej  - ei> 4 o for all i z j 
for all j = 1, 2, 0 a, R 
for any k 

2) If (38) is consistent, then 

Y j ( k )  ( e j  - ei)  4 o for all i f j 

for all j = 1, 2, . e . ,  R 

for any k 

This lemma can be proved by c~ntradict ion.~~. '~  
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Theorem 11: Consider the set of linear inequalities (38) 

T'[Y(k)] = 11 Y ( k )  ( 1  B Tr [ Y t ( k ) Y ( k )  J 

From ( 5 7 ) ~  (*50) and (G7), 
and the algorithm (64) to solve it, and let ZSj(2) = ZZjR(ZZj) (74) 

Substituting (74) into ( G O )  gives 

tHj(Y(k)) = [ zZ j (k )R(J j (k ) )  + d j ( k ) ] f l j - ' .  (75) R-1 R nj 

C I I  ~ , ( k )  1 1 2  = C C II iYj(k) ) I2  
(1=1 j=1 i=l 

(72) 
Substitute (75) and (54) into the following exprcssion, 

1)  If t>he set of linear inequalities is consistent, then 

a) Ar'[I'(k)] 4 v [ Y ( k  + l ) ]  - l'[Y(k)] 
R n j  

- 2 ~  1Hj lyj' 
j=l 2-1 

a solution in an infinite nuinber of iterations; 
and 

b) a solution is obtained in n finite number of 
steps. 

3)  If the set of linear inequalities is inconsistent, 
then there exists a positive integer k* such that 

V [ Y ( k ) ]  < 0 for k < k* 
V [ Y ( k ) ]  = 0 for k 2 k* 

lY,(k) ( e j  - e i )  $ 0 for k < k* 
for all i # j 

for all j = 1, 2, - e * ,  R 
,Yj(k)  (e, - e;) = Yj(k*) (ej - ei) 5 0 

for all k 2 k* 

[lZjR(tZj) - rAjl t .  (76) 

It has been shown that the off-diagonal elements in 
(EjfEj)-l are negative,16 and, from (67) and (6S), 
&!--I( ZZj) is a diagonal matrix with all positive diagonal 
elements. It follows that the off diagonal elements of 
(EjtEj)-'R-'( ~2j) are also negative. From ( 5 6 ) ,  (60), 
and (74), the elements of [ Z , R  ( zZ~)  + z A ~ ]  are either 
positive or zero, and the corresponding elements of 
[lZjR(lZj) - lhj] are either zero or negative. Hence, 
the last term in (76), which is equal to - Z E ~  as defined 
in (69), is shown to be non-positive. Substituting (69) 
into (7G), which, in turn, is substituted into (73), one 
obtains 

A V [ Y ( ~ ) ~  = - P ( I C )  
R n3 

j=1 2=1 
J I ~ ( Y ( ~ ) )  { (EjE,">-1 

~ ( k )  = B(k*)  for k >, k*. 
That is, the occurrence of a matrix Y(k) with all non- 
positive elements of Y ( k )  (ej - ei) for all i # j and 
all j a t  any step terminates the algorithm and indicates 
thc nonlinear separability of the R-class patterns. 

Proof: Ahking substitution of the recurrence relation 
of Y(k) in (71) and simplification, it can be shown 
that 

AV[Y(k) ]  = Tr [ y r ( k  4- 1)Y(k + 1)  - Y f ( k ) Y ( k ) ]  
R nj 

j=l 2=1 
= --2p(k) zHj(Y(k>) zYjf(k) 

R-1 

9-1 

- p"L) c h,t(Y(li))ARth,(Y(k)), (77) 

A V ( Y ( k ) )  is negntive definite if the right hand side 
of the above equation is negative definite in zNj (Y(b ) )  
or in [Z,R(zZ,) + zA,]. The l a d  two terms on the 
right hand side are negative semi-definite. If a value 
of p ( k )  can be found such that 

R nj 

C C JTj (Y(k) )  (.Ejt)-l[R-l(2zj) P ( ~ ) I ] . E , ' ~  
j-1 2-1 

* H . ( Y ( k ) )  > 0 
1 J  

then A V ( Y ( k ) )  is negative definite in [ lZ jR( zZ j )  + 
Ai]. Note that if 
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[R-'(lZj) - p ( k ) l ]  is positive definite and has real 
eigenvalues ns can be shown by following (67) and 
((35); but it is not certain that (Ejt)-'[R-l(zZj) - 
p ( k ) l ] E l t  cnii be positive definite for all j and all 1. Let 
p ( k )  be so clioscn as to maximize - A V [ Y ( k ) ]  at each 
step, one obtains a choice of p ( k )  as given in (65), 
provided tlie conditioii (66) is satisfied to make sure 
that p ( k )  > 0. For this value of p ( k ) ,  

5 0  for tNj (Y(k) )  # 0 or CzZjR(1Zj) + ~ h j ]  # 0 

for all 1 nndj. 

Hence, A V [ Y ( k ) ]  is negative definite in [lZjR(iZj) + 
z A j ] .  Note t(1iat ~ZjR( t z j )  + tA j  = 0 for all j and all I 
only if zZj 5 0, that is, only if Y ( k )  = 0 or iYj(k) 
(e j  - e i )  5 0 for all i # j and for a l l j .  Since i t  is as- 
sumed that the set of the inequalities (35) is consistent, 
from the lemma Y j ( k )  ( e j  - e;) $ 0 for all i # j and 
for all j ;  therefore, 

A V [ Y ( k ) ]  < 0 for all Y ( k )  f 0 

= 0 if Y ( k )  = 0 

and the solution Y = 0 of tlie cquahion (71) can be 
reached asymptotically, that is, 

lim 1 1  Y ( k )  112 = 0 

which corresponds to a solution U** with AU** = B 
such that A,U+*(ej - e i )  = Bj(ej - ei) > 0 for a l l i  # j  
and for all j .  This is the proof of Part 1 (a). 

I;+m 

Notc that for B ( 0 )  given in (YO), and 6 > 0, 

& j ' ( k  + l)Ej hi'(k)Ej + p ( k ) [ & j ( Z ( k ) )  -1- A j ( k ) ]  
> O(l + 6)eJtEj > 0 for all 1 and j .  

For a sufficiently lnrge but finite k, V [ Y ( k ) ]  < 1 such 
that [ (  zYj(k) ( I 2  < 1 and 

~ Y j ( k ) E j  > --be,tEj for all 1 f j and all j .  

It follom then 

A,U(k)Ej = B,(k)Bj  -t. Yj(k)Ej  

which indicates a solution T'* = ( ' ( I C )  is obtnincd in a 
finite number of iteration stcps. This is tlir proof of 
part l (b ) .  

Part 2 can bo proved i n  tlir snmc ivny RS that i n  the 
Ho-Knsliyap tl~corcni.'~ 

A new goneralizecl invcrbr algorithm for R-cl:iss p:ittcrIi 
classification is propowl uliicli is p:irallel to tlir one 
given by Teiig and Li. In tlir caw of 11' = 3, thc algo- 
rithm is reduced to the improved dicliotomizstiori 
algorithm devrlopcd in tlic beginniiig; except licrr A ,  
is composed of traneposcs of :Lugmcntccl pattrrn vectors 
without change of sign 2nd 13, is a column vcctor con- 
sisting of elements all rqual to e2 = -1. Tliis corre- 
sponds to the reformtilation of the Ho-J<~sIiyap algo- 
rithm as mentioned by Wee and Fu.'; The proposed 2- 
class algorithm h w  a higher rate of convergence than 
previous methods for :t certain range of initial Z, vcctor 
or vectors. A comparison has been macle bctweii this 
improved algorithm with p (k) given by eqwtion (26) 
and the Ho-Kashynp algoritlim with 1) = 1 , tlle con- 
vergeiice rate may br greatly incrrased for .001 5 
b i (0 )  5 0.5 (i = 1, 2, -.-, S), as verified by tlie 
computer results of several sn-itching theory and 
pattern classification problems. For problems wliere a 
large number of iterations, for example, greatpi. than 
twenty, were required for the Ho-I<ashyap algori thin, 
the proposed algorithm reduced this number of itera- 
tions by a factor of 20 or more. Even though the cost 
per iteration for the proposed algorithm is 10 to 20 
per cent greater than the Ho-Kasliyap algorithin, the 
total cost is reduced. For problems \vherc a small num- 
ber of iterations werr requirrd by the Ho-T<asliyap 
algorithm, less than twenty, the proposed algoi*itlini 
reduced tlir number of iterations by as mucli as 30 
percent. Experimental results suggest tlint tlie piqjowd 
algorithm is adv:intngeous for problcins requiring n 
large number of iterations bjr the Ho-Kasliynp 
algorithm. 

This n-ork is b:isctl p:irtinlly 01) n 1'11.1). cli.wi.t:i tioii 
submitted by the first :iutlior in p:irti:iI fulfillmcnt of 
the requirenicnts for thc dcgrcc of Iloctor of J'liilo.~oplty 
at the University of Pittsburgh. Ihririg tlie c o u w  of 
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Proceedings of t h e  Third H a w a i i  I n t e r n a t i o n a l  Conference 
On System Sciences,  P a r t  1, 1970 

ON AN IMPROVED GENERALIZED INVERSE ALGORITHM FOX LINEAR INEQUALITIES 

De p ar tmen t of 

INTRODUCTION. 

** by * 
L. C .  Geary and C. C. L i  

P i t t s b u r g h ,  Pennsylvania 15213 
Electrical Engineergng, University of P i t t s b u r g h  

Both p a t t e r n  r ecogn i t ion  and th re sho ld  l o g i c  problems 
. .  

r e q u i r e  t h e  determinat ion of a dec i s ion  func t ion  o r  dec i s ion  func t ions  

which, i n  t h e  case of l i n e a r  s epa ra t ion ,  i nvo lve  a set of l i n e a r  in- 

e q u a l i t i e s  (Ie4). An improvzd gene ra l i zed  inverse algori thm has been 

developed f o r  a s o l u t i o n  w - of a set of l i n e a r  i n e q u a l i t i e s  -- A M > - 0. 

a lgori thm is  an improvement of t h e  €Io-Kashyap algori thm by choosing a 

d i f f e r e n t  c r i t e r i o n  funct ion,  J(r_> = 

t o  be minimized where y i s  the i t h  component of t he  Nxl v e c t o r  

y = A - k, 
Kashyap algori thm caused by a s t e e p e r  g r a d i e n t  of J(y). 
THE PROPOSED DJO-CLASS ALGORITHM. 

- At = [ $ C 1 , * e * s  

sample p a t t e r n  v e c t o r s  

r i g h t  denotes t h e  p a t t e r n  class and t h e  s u b s c r i p t  on the  l e f t  denotes the  

Ilth sample p a t t e r n  i n  t h a t  class. 

of J(y) wi th  r e s p e c t  t o  - w and b are 

The 

(1) 
1 2  N 

1 (cash 2 y i )  , 
i= 1 

i 
> - 0. The improvement l ies  i n  t h e  a c c e l e r a t i o n  of t h e  Ho- 

Let the ma t r ix  - A ,  whose t ranspose i s  -- 
- x 1, b e  an Nxn matrix of augmented El’ -p2,..., n -2 

2 of dimension n x l  where the  s u b s c r i p t  on t h e  1 
llzi 

Note t h a t  N = n1 3. n2. The g rad ien t s  

t where s (x) = [ s i n h  y ,..., s i n h  y 1. Since w i s  n o t  cons t r a ined  i n  any - 1 N - 
a J (2) 

0 i m p l i e s  s(y) = 0, which, i n  t u r n ,  i m p l i e s  y 

Solving y = A w - b = 0, one ob ta ins  w = A b ,  where A 

= 0 f o r  a l l  
I/ i way, 7 = - - 

# 

On t h e  o t h e r  hand, f o r  a f i x e d  w_, 

- 
i=1 ,2 , .  . .,N. 
t h e  gene ra l i zed  i n v e r s e  of - A. 

-=  0 wi th  

wiFh k denoting t h e  i t e r a t i o n  number: 

i s  - -- - 

a J (y) 
> 0 d i c t a t e s  a descent procedure of t h e  following form, - - ab 

- b (k-t-1) = - b(k )  -k p(k) h ( k ) ,  where 

* 
** P r e s e n t l y  a t  Gulf Research Center, P i t t s b u r g h ,  Pennsylvania 15230. 

The work w a s  supported i n  p a r t  by t h e  MASA Grant XsG-416. 
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- h ( k )  = [hi(k)J  = [sild1 yi(k) + l s inh  yi(k)l]L. ( i=1,2,  ..., N). (3) 

It can be shown t h a t  p(k)  may b e  chosen to  equa l  

where y (k) = Max lyi(k) I e An optimum value of p(k) is 
i in ax 

[y(k) -t Ix(k) I 1 tE(k) [y(k) f Iy(k) I I 
p(k)  = (5) 

2[y(k) + I ; ) L ( ~ )  1 1 t&(k) EL - A &"I&(k) [y(k) f ly(k) I 1 
8 provided t h a t  L - A A  > 0. 

Combining the  above r e l a t i o n s h i p  one ob ta ins  t h e  fol lowing algo- 

r i  thm: 

y(k)  = & - b(k); # 
W_(O) = Ab(O), g o )  > 0; 

a (6) - b ( k  4- 1) = b(k)  f p(k) &(k); E(k f 1) = E(k) f p(k) A k(k) .  

Note t h a t  i n  t h i s  a lgori thm p(k) v a r i e s  a t  each s t e p  and i s  a non-l inear  

func t ion  of y (k ) .  

t h a t  the above algori thm (6)  converges t o  a s o l u t i o n  of t h e  system 

J u s t  l i k e  t h e  Ha-Kashyap algori thm, i t  can be shown * 
of l i n e a r  i n e q u a l i t i e s  in a f i n i t e  number of s t e p s  provided t h a t  a 

s o l u t i o n  e x i s t s ,  and s imultaneously acts as a test f o r  the  incons is tency  

of t h e  l i n e a r  i n e q u a l i t i e s  . 
THE PP.OPOSED MULTICLASS ALGORITHM. 

c l a s s i f i c a t i o n  is  t h a t  i t  mus t  be  determined t o  which of t h e  R d i f f e r e n t  

classes, C ,C ,..., CRs a given p a t t e r n  vec to r ,  E,  belongs.  I f  t he  R- 

c l a s s  patterns are l i n e a r l y  sepa rab le ,  t h e r e  e x i s t  R weight vec to r s  w 

t o  c o n s t r u c t  'R d i scr iminant  func t ions  g (x ) ,  ( j=1 ,2 , .  . . ,R ) ,  such t h a t  

gj(z) = x w 

have formulated another  se t  of i n e q u a l i t i e s  which can be considered as 

( 6 )  

The problem of mul t i c l a s s  p a t t e r n  

1 2  

-j 

t t 3 -  
> x w = gi(s) for a l l  i#j, ~f. E C Chaplin and Levadi 

--j -+. j' 

a rep resen ta t ion  of l i n e a r  s epa ra t ion  of R-class  pattern^'^). 
t t t of i n e q u a l i t i e s  is  I f x  U - gjl I < I Ix g - $1 I f o r  a l l  i#j, x E C and 

a l l  j = 1 , 2 , .  . . ,R, where - U is  an nx(R-1) weight  matrix apd t h e  vec to r s  

This set 

-- j - -  

e ' s  are t h e  v e r t e x  vec to r s  of a R-1 dimensional e q u i l a t e r a l  simplex 

wi th  i t s  cen t ro id  a t  t h e  o r i g i n .  I f  each e. is as soc ia t ed  wi th  one 

c l a s s ,  - x is c l a s s i f i e d  according t o  t h e  n e a r e s t  neighborhood of t h e  

mapping -- x U t o  t h e  v e r t i c e s .  

3 
-3 

t These two r ep resen ta t ions  a r e ,  i n  &c t ,  
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equ iva len t  with w = U e . ,  (j=1,2,.. . , R ) .  
--J 

The g e n e r a l i z a t i o n  of t h e  improved two-category algorithm app l i -  

cable  t o  mult i -c lass  p a t t e r n  c l a s s i f i c a t i o n  problems has been developed 

and i t s  convergence proved(6). 

s o l u t i o n  matr ix  of a set  of l i n e a r  i n e q u a l i t i e s  A . U  (e  

( f o r  a l l  i # j  and j=1 ,2>** ,R) ,  which i n  t u r n  generates  t h e  weight  vec to r s  

- - where A .  i s  t h e  j t h  block i n  composed of n t r a i n i n g  aug- 

The algori thm so lves  f o r  an nx(R-1) 

- q) > - 0 ,  
-3- -j 

zj u 5j¶ -J j 
mented pattern vec to r s  of class C 

row vec to r s  

following i n e q u a l i t i e s  &j ( g j  - gi) > 0 f o r  a l l  i+j ,  and j = 1 , 2 ,  ..., R. 

Let  also Y b e  an Nx(r-1) matrix composed of row vec to r s ,  Y . Then t h e  

gene ra l i zed  mult i -c lass  algorithm i s  given i n  t h e  following equations: 

L e t  - B be an Nx(R-1) matrix whose 

b .  correspond t o  t h e  class grouping i n  &and s a t i s f y  the 
t 3"  

J+J t 

- 8-j 

a - U ( 0 )  = L(1 g(0) 9 
= - g ( k >  s L4 (k) = y, (k)  5;s 

where 

and t B.(O)  = t h e  j t h  block i n  B(O) composed of n row vec to r s  e p(k) 
-J j -j * 

can b e  expressed by 

where 
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The proof of convergence of t h i s  m u l t i c l a s s  a lgori thm u t i l i z e s  t h e  con- 

cept  of napping t h e  p a t t e r n  classes i n t o  v e r t i c e s  of t h e  e q u i l a t e r a l  

s implex(6) ,  similar t o  the  procedure used by Teng and L i ( 7 ) ,  

c r i t e r i o n  func t ion  J(X) t o  b e  minimized wi th  respect t o  2 and is the  

The 

trace of 4 

Jij@ = 4 

( i Z 1 ) .  . * ,N; jJ1, * * 0 sR-l) e 

CONCLUSION e 

vergence and the  computer t i m e  can be s u b s t a n t i a l l y  reduced wi th  t h e  

proposed algori thm when cmpared  to t h e  Ho-Kashyap algori thm, e spec ia l -  

l y  when t h e  la ter  requi red  a l a r g e  n m b e r  of i t e r a t i o n s ,  
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